Local shuffling of spike trains boosts the accuracy of spike train spectral analysis.

نویسندگان

  • Michal Rivlin-Etzion
  • Ya'acov Ritov
  • Gali Heimer
  • Hagai Bergman
  • Izhar Bar-Gad
چکیده

Spectral analysis of neuronal spike trains is an important tool in understanding the characteristics of neuronal activity by providing insights into normal and pathological periodic oscillatory phenomena. However, the refractory period creates high-frequency modulations in spike-train firing rate because any rise in the discharge rate causes a descent in subsequent time bins, leading to multifaceted modifications in the structure of the spectrum. Thus the power spectrum of the spiking activity (autospectrum) displays elevated energy in high frequencies relative to the lower frequencies. The spectral distortion is more dominant in neurons with high firing rates and long refractory periods and can lead to reduced identification of low-frequency oscillations (such as the 5- to 10-Hz burst oscillations typical of Parkinsonian basal ganglia and thalamus). We propose a compensation process that uses shuffling of interspike intervals (ISIs) for reliable identification of oscillations in the entire frequency range. This compensation is further improved by local shuffling, which preserves the slow changes in the discharge rate that may be lost in global shuffling. Cross-spectra of pairs of neurons are similarly distorted regardless of their correlation level. Consequently, identification of low-frequency synchronous oscillations, even for two neurons recorded by a single electrode, is improved by ISI shuffling. The ISI local shuffling is computed with confidence limits that are based on the first-order statistics of the spike trains, thus providing a reliable estimation of auto- and cross-spectra of spike trains and making it an optimal tool for physiological studies of oscillatory neuronal phenomena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Innovative Methodology Local Shuffling of Spike Trains Boosts the Accuracy of Spike Train Spectral Analysis

Rivlin-Etzion, Michal, Ya’acov Ritov, Gali Heimer, Hagai Bergman, and Izhar Bar-Gad. Local shuffling of spike trains boosts the accuracy of spike train spectral analysis. J Neurophysiol 95: 3245–3256, 2006. First published January 11, 2006; doi:10.1152/jn.00055.2005. Spectral analysis of neuronal spike trains is an important tool in understanding the characteristics of neuronal activity by prov...

متن کامل

Correcting for the sampling bias problem in spike train information measures.

Information Theory enables the quantification of how much information a neuronal response carries about external stimuli and is hence a natural analytic framework for studying neural coding. The main difficulty in its practical application to spike train analysis is that estimates of neuronal information from experimental data are prone to a systematic error (called "bias"). This bias is an ine...

متن کامل

Surrogate Spike Train Generation Through Dithering in Operational Time

Detecting the excess of spike synchrony and testing its significance can not be done analytically for many types of spike trains and relies on adequate surrogate methods. The main challenge for these methods is to conserve certain features of the spike trains, the two most important being the firing rate and the inter-spike interval statistics. In this study we make use of operational time to i...

متن کامل

Measuring spike train distance from multichannel spike trains data simulated by coupled escape rate model

Estimating the population activity patterns between two or more spike trains is a fundamental problem in studying neural coding in computational neuroscience. In recent years, there are many different methods proposed to build a framework to deal with these problems by using spike train metric. Here we suggest a kernel method for multichannel spike trains that can provide an opportunity to meas...

متن کامل

Quantifying Spike Train Oscillations: Biases, Distortions and Solutions

Estimation of the power spectrum is a common method for identifying oscillatory changes in neuronal activity. However, the stochastic nature of neuronal activity leads to severe biases in the estimation of these oscillations in single unit spike trains. Different biological and experimental factors cause the spike train to differentially reflect its underlying oscillatory rate function. We anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 95 5  شماره 

صفحات  -

تاریخ انتشار 2006